12 United States Patent

Pistoia et al.

US011507397B2

US 11,507,397 B2
Nov. 22, 2022

(10) Patent No.:
45) Date of Patent:

(54) SYSTEMS AND METHODS FOR
ZERO-FOOTPRINT AND SAFE EXECUTION
OF QUANTUM COMPUTING PROGRAMS

(71) Applicant: JPMORGAN CHASE BANK, N.A.,
New York, NY (US)
(72) Inventors: Marco Pistoia, Amawalk, NY (US);
Robert Matles, Glenview, IL (US);
Matthew Liste, New York, NY (US);
David A. Carter, New York, NY (US);
Apoorv Saxena, New York, NY (US);
Alexander Buts, New York, NY (US);
Dylan Herman, New York, NY (US)
(73) Assignee: JPMORGAN CHASE BANK, N.A.,
New York, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent 1s extended or adjusted under 35
U.S.C. 154(b) by 83 days.
(21) Appl. No.: 17/089,897
(22) Filed: Nov. 35, 2020
(65) Prior Publication Data
US 2022/0137989 Al May 5, 2022
(51) Imnt. CL
GO6l’ 9/54 (2006.01)
GO6F 9/451 (2018.01)
GO6F 30/20 (2020.01)
GO6N 10/00 (2022.01)
(52) U.S. CL
CPC GO6F 9/451 (2018.02); GO6F 30/20

(2020.01); GO6N 10/00 (2019.01)

(38) Field of Classification Search
CPC GO6F 9/4443; GO6F 9/45512; GO6F 9/463;
GO6F 9/547; GO6F 9/548
USPC 719/320, 330
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
10,803,395 B2 * 10/2020 Pistoiaoooveeee.. GOG6F 8/35
11,194,573 B1* 12/2021 Smith GOO6F 8/41
11,270,220 B1* 3/2022 Richardson GO6N 10/00
2020/0117764 Al* 4/2020 Zuccarelll GO6F 30/20

* cited by examiner

Primary Examiner — Andy Ho
(74) Attorney, Agent, or Firm — Greenberg Traurig LLP

(57) ABSTRACT

Systems and methods for zero-footprint and safe execution
ol quantum computing programs are disclosed. According to
one embodiment, 1n an electronic device comprising at least
one computer processor, a method for cloud-based execution
ol quantum-computing programs may include: (1) receiving,
from a user interface on a client device, a serialized file
comprising a domain, an application, and an algorithm; (2)
receiving, from the user interface, problem data and an
identification of a quantum computing backend for execut-
ing the problem data; (3) mnstantiating a quantum program
for execution and communicating the quantum program and
the problem data to the quantum computing backend for
execution; (4) recerving, from the quantum computing back-
end, an output of the execution; and (5) communicating the
output to the user interface on the client device.

16 Claims, 2 Drawing Sheets

CQuantum
Computing
Backend
(140}

¥

|
i

Domains
(130)

/
\

/)

/

i

’/-"'

Computer Program or
application

(125)

Applications
(132)

|

—

Il

T
\

Algorithms
{134)

User Interface
(110)

./

sServer

(120)

m
W\

Circuits
(136)

U.S. Patent

User Interface
(110)

./

Nov. 22, 2022

Quantum
Computing
Backend
(140)

i
;
;
;
;
;
;
;
;
v

e

Computer Program or
application
{125}

Server
(120}

FIGURE 1

Sheet 1 of 2

US 11,507,397 B2

(130)

L L Lo Y i P

Applications
(132)

HAlgorithm ﬂ‘
(134)

Circuits
(136)

U.S. Patent Nov. 22, 2022 Sheet 2 of 2 US 11,507,397 B2

Present user with options for selecting domain, application,
algorithm, and backend in user interface
(205)

.

Receive selection of domain, application, algorithm, and backend
from user with problem data and checks for consistency
(210)

AL LA LA LA L LML L PP LS P A L P P R L A L L A A L L A L L P P P PR L o A

Serialize input into standard format and send to server
(215)

!

Server receives serialized data from client
(220}

v

Server instantiates quantum program for execution and
communicates to backend

(225)

v

Backend execuies quantum program
(230)

v

Results returned to user interface via server
(235)

FIGURE 2

US 11,507,397 B2

1

SYSTEMS AND METHODS FOR
ZERO-FOOTPRINT AND SAFE EXECUTION

OF QUANTUM COMPUTING PROGRAMS

FIELD OF THE INVENTION

The present disclosure relates generally to systems and
methods for zero-footprint and sate execution of quantum
computing programs.

DESCRIPTION OF THE RELATED ART

(Quantum computing promises the ability to solve prob-
lems that classical computing cannot. This may lead to
breakthroughs in science, materials, financial strategies, etc.

SUMMARY OF THE

INVENTION

Systems and methods for zero-footprint and safe execu-
tion of quantum computing programs are disclosed. Accord-
ing to one embodiment, 1n an electronic device comprising
at least one computer processor, a method for cloud-based
execution of quantum-computing programs may include: (1)
receiving, from a user interface on a client device, a serial-
1zed file comprising a domain, an application, and an algo-
rithm; (2) receiving, from the user interface, problem data
and an 1dentification of a quantum computing backend for
executing the problem data; (3) instantiating a quantum
program for execution and communicating the quantum
program and the problem data to the quantum computing
backend for execution; (4) receiving, from the quantum
computing backend, an output of the execution; and (5)
communicating the output to the user interface on the client
device.

In one embodiment, the domain, the application, and the
algorithm may be selected serially.

In one embodiment, the serialized file may have a stan-
dardized format.

In one embodiment, the domain, the application, and the
algorithm may be represented in the serialized file as key/
value pairs.

In one embodiment, the quantum computing backend may
include a quantum computer, a quantum computing simu-
lator, etc.

In one embodiment, the client device may check the
domain, the application, and the algorithm for consistency.

According to another embodiment, 1n an electronic device
comprising at least one computer processor, a method for
cloud-based execution of quantum-computing programs
may include: (1) recerving, from a user mterface on a client
device, a selection of a domain, an application, and an
algorithm; (2) recerving, from the user interface, problem
data and an 1dentification of a quantum computing backend
for executing the problem data; (3) serializing the selection
of the domain, the application, and the algorithm; (4)
communicating the serialized file and the problem data to a
server, wherein the server instantiates a quantum program
for execution and communicates the quantum program and
the problem data to the quantum computing backend for
execution; (5) recerving, from the quantum computing back-
end via the server, an output of the execution; and (6)
presenting the output to the user interface on the client
device.

In one embodiment, the domain, the application, and the
algorithm may be selected serially.

In one embodiment, the serialized file may have a stan-
dardized format.

10

15

20

25

30

35

40

45

50

55

60

65

2

In one embodiment, the domain, the application, and the
algorithm may be represented 1n the serialized file as key/
value patrs.

In one embodiment, the quantum computing backend may
include a quantum computer, a quantum computing simu-
lator, etc.

In one embodiment, the method may further include
checking the domain, the application, and the algorithm for
consistency.

According to another embodiment, a system for cloud-
based execution of quantum-computing programs may
include a client device comprising a client device computer
processor and executing a user interface; a server compris-
Ing a server computer processor i communication with the
client device; a domain library comprising a plurality of
domains; an application library comprising a plurality of
applications; an algorithm library comprising a plurality of
algorithms; a circuit library comprising a plurality of quan-
tum circuits; and a plurality of quantum computing back-
ends. The client device may receive, at the user interface a
selection of a domain from the plurality of domains in the
domain library, an application from the plurality of appli-
cations 1n the application library, and an algorithm from the
plurality of algorithms 1n the algorithm library; may receive,
at the user interface problem data and an 1dentification of
one of the quantum computing backends for executing the
problem data; may serialize the selection of the domain, the
application, and the algorithm; may communicate the seri-
alized file and the problem data to a server, wherein the
server 1nstantiates a quantum program for execution and
communicates the quantum program and the problem data to
the quantum computing backend for execution, wherein the
quantum program may include at least one circuit from the
circuit library; may instantiate a quantum program {for
execution and communicates the quantum program and the
problem data to the quantum computing backend for execu-
tion; and may receive, from the quantum computing back-
end, an output of the execution communicates the output to
the user interface on the client device.

In one embodiment, the domain, the application, and the
algorithm may be selected serially.

In one embodiment, the domain, the application, and the
algorithm may be represented 1n the serialized file as key/
value pairs.

In one embodiment, the plurality of quantum computing
backends may include a quantum computer and a quantum
computing simulator.

In one embodiment, the client device may check the

domain, the application, and the algorithm for consistency.

BRIEF DESCRIPTION OF THE

DRAWINGS

In order to facilitate a fuller understanding of the present
invention, reference 1s now made to the attached drawings.
The drawings should not be construed as limiting the present
invention but are intended only to 1llustrate different aspects
and embodiments.

FIG. 1 depicts a system for cloud-based execution of
quantum-computing programs according to one embodi-
ment,

FIG. 2 depicts a method for cloud-based execution of
quantum-computing programs according to one embodi-
ment.

DETAILED DESCRIPTION

Embodiments relate generally to systems and methods for
zero-footprint and safe execution of quantum computing
programs.

US 11,507,397 B2

3

As with classical computing, many end users will not care
how their problem 1s solved; they only care that the problem
1s solved, 1deally 1n real time and with accurate results. And,
because quantum computing 1s very diflerent from classical
computing, most users will not know or be able to provide
quantum 1nstructions to the computer. Thus, embodiments
are directed to systems and methods for cloud-based execu-
tion of quantum-computing programs.

In embodiments, users may configure a quantum-comput-
ing program locally, for example, on a web browser, with
instructions for that program to be executed on a remote
cloud-based system. The risk behind such approach 1s that
remote users, perhaps inadvertently, could submit to the
remote system code capable of affecting the integrity or
violating the confidentiality of the data on the remote
system. Therefore, embodiments are directed to systems and
methods that allow only verified code to be executed,
whereas harmiful code will be prevented from being
uploaded and executed.

Embodiments may provide at least some of the following
technical advantages: extensibility (e.g., plug-and-play new
domains, applications, algorithms, algorithmic components,
and devices); modularity (e.g., support for reusable compo-
nents, enablement for focused research i1n specific areas
only); support for multiple user types (e.g., financial ana-
lysts, quantum researchers, programmers, non-program-
mers); multiple interfaces (e.g., programmatic, declarative,
visual and Web; Web interface requires no installation);
configuration-error resilience (e.g., run-time schema-based
quantum/application configuration validation); ease of use
(e.g., user interface allows for: (a) configuring and running
an experiment, and (b) automatic code extraction); hardware
independence (e.g., the same experiment may be run on
multiple devices and simulators for easy comparison); sci-
entific value (e.g., will contain the most competitive collec-
tion of unique quantum algorithms for these domains);
run-time-environment protection (e.g., harmiul code 1s pre-
vented from being uploaded and executed).

Referring to FIG. 1, a system for cloud-based execution of
quantum-computing programs 1s disclosed according to one
embodiment. System 100 may include user nterface 110
that may be any suitable electronic device (e.g., computers,
workstations, terminals, smartphones, kiosks, Internet of
Things (Io'T) devices, etc.). User interface 110 may interface
with computer program or application 125 that may be
executed by server 120, which may be a physical server, a
hardware server, etc.

Computer program or application 125 may interface with
one or more library, including domains library 130, appli-
cations library 132, algorithms library 134, and circuits
library 136. Other libraries may be provided depending on
the end use, or as otherwise necessary and/or desired.

Example domains may include finance, optimization,
artificial intelligence, etc. Other domains may be included as
1s necessary and/or desired. Examples of finance applica-
tions may include risk analysis, portiolio optimization, port-
folio diversification, etc. Examples of optimization applica-
tions may include the “traveling salesman™ problem,
maximum cut, clique, stable set, graph partition, efc.
Examples of artificial intelligence applications may include
support vector machines, neural networks, reinforcement
learning, etc.

Examples of algorithms may include quantum algorithms
(e.g., Grover, Shor, Phase Estimation, Amplitude Estima-
tion, etc.); quantum/classical hybrid algorithms (e.g., Varia-
tional Quantum Eigensolver, Quantum Approximate Opti-
mization Algorithm, etc.); algorithmic components (e.g.,

10

15

20

25

30

35

40

45

50

55

60

65

4

Variational Forms, Optimizers, Feature Maps, Multiclass
Classification Extensions, Uncertainty Problems, Quantum
Fourier Transforms, etc.); and classical algorithms (e.g.,
Classical Eigensolver, Linear System Solver, Support Vector
Classifier with Radial Basis Function Kernel, etc.). Other
algorithms may be used as 1s necessary and/or desired.

Examples of circuits include hardware-independent quan-
tum circuit management, such as circuit generation, compi-
lation, hardware-specific translation, hardware specific opti-
mization, etc. In one embodiment, the circuits library 136
may include circuit basic blocks to generate circuits pro-
grammatically, on the fly, depending on the problem being
solved.

Although four libraries 130, 132, 134, and 136 are
depicted, i1t should be recognized that a greater number of
libraries, or a fewer number of libraries, may be provided.
For example, domains library 130 and applications library
132 may be merged into the same library.

Computer program or application may further interface
with quantum computing backend 140, which may include
quantum computing cloud-based resources, including, for
example, quantum computers, quantum computer simula-
tors, combinations thereot, etc. The configuration may be
arbitrarilly complex and include low-level parameters, such
as the use of individual qubits 1n the quantum computer or
simulator used for the execution.

In one embodiment, quantum computing backend 140
may be a cloud-based resource.

An example of a quantum computing simulator 1s dis-
closed in U.S. Provisional Patent Application Ser. No.
62/978,252, the disclosure of which 1s hereby incorporated,
by reference, 1n 1ts entirety.

Although only one quantum computing backend 140 is
depicted 1n FIG. 1, it should be recognized that additional
quantum computing backends 140 may be used as i1s nec-
essary and/or desired.

In one embodiment, using computer program or applica-
tion 125 via user interface 110, a user may select one or more
of a domain from domains library 130, an application from
applications library 132, and an algorithm or combination of
algorithms from algorithms library 134.

The algorithm, or combination of algorithms, may gen-
erate one or more circuits via calls to circuits library 136.
The circuit or circuits generated via calls to circuits library
136 may then be executed on a quantum computer server
120, which produces the output of the program. Such output
1s communicated back to the user via the user interface 110
chosen by the user to communicate with the system.

At the point 1n which the user configures a quantum
program execution via user interface 110, the user interface
may be configured to produce a summary of the program-
execution configuration, including the input to the program,
the algorithm to be used, and the parameters to the classical
and/or quantum components used to execute the experiment.
In one embodiment, this summary may be produced and
saved as a JSON file. Such summary file may be transierred
to the server on the cloud for instantiating the program
execution. With this approach, there 1s no need for the client
side of the program to have any of the server-side libraries
installed, as all those libraries are used on the server side.

User interface 110 may also be augmented with param-
cter-checking capabilities. For example, user interface 110
may control that the parameters are of the types and within
expected ranges, and that the software components chosen
by the user to solve the problem of interest are used
consistently with each other. For example, the Variational
Quantum Eigensolver (VQE) algorithm requires the use of

US 11,507,397 B2

S

a classical optimizer. The user will therefore be prompted
with the choice of a classical optimizer to be used during the
execution of VQE, assuming that VQE 1s the algorithm
selected by the user to solve the particular problem of
interest. If, however, the user selects Phase Fstimation as the
algorithm of choice, there 1s no need for a classical optimizer
and such choice can be disabled or otherwise flagged as an
error 1f the user chooses a classical optimizer.

In addition to error detection, embodiments may verily
statically that the program configuration entered by the user
1s “safe,” 1n the sense that 1t will not harm the integrity of the
computer on which the program will be executed. In
embodiments, no executable code 1s uploaded to the server,
thereby preventing code-injection attacks. The only code
may be uploaded 1s declarative configuration code.

In another embodiment, user interface 110 may be a
programmatic user interface, such as a Jupyter Notebook
interface. This solution 1s also a zero-footprint solution
because the code dependencies may be automatically pre-
configured without the user having to install any library
beforehand.

Referring to FIG. 2, a method for cloud-based quantum
execution 1s disclosed according to one embodiment. In
embodiments, a user may execute a quantum application by
interacting directly only with the user mterface. The appli-
cation configuration 1s uploaded to the server, where the
program execution 1s instantiated according to the directions
of the user, after having statically verified that the program-
execution configuration is sate. On the server side, the input
to the program specified by the user 1s translated into an
input to a quantum algorithm or combination of algorithms,
whose goal 1s to generate one or more circuits. Such circuits
will then be executed on a quantum computing backend,
such as a quantum computing computer or a quantum
computing simulator, and the output of that execution will be
presented back to the user via the user interface.

In step 205, a user may be presented with options for
quantum execution by the quantum resources. For example,
the user may be presented with a menu of domains, appli-
cations, algorithms, algorithmic components, quantum com-
puting backends, and other parameters as 1s necessary and/or
desired. In one embodiment, the menu may provide sub-
options based on a prior selection. For example, once the
user selects a domain, the user may be presented with a
menu of applications that are appropriate for the domain.
Similarly, once the user selects an algorithm, the user may
be presented with a menu of algorithmic components that
are appropriate for that algorithm. Any suitable manner of
making selections may be used as 1s necessary and/or
desired.

In step 210, the user’s selections may be received, and in
step 2135, the user’s mput may be serialized into a first file
having a standard format. For example, the first file may be
a dictionary file and may be 1n the JSON format.

In one embodiment, the serialized data may be repre-
sented 1n the form of a dictionary. Each key/value pair in the
dictionary corresponds to a selection made by the user. For
example, key “domain™ may be set to value “finance”, key
“problem™ to value “portiolio_optimization™, key “algo-
rithm” to value “vge”, key “optimizer” to value “cobyla”,
etc. Such data 1s collected at the user-interface level after the
user completes the selections representing the quantum-
problem execution, and transmitted to the server. In another
embodiment, where the user interface 1s programmatic (for
example, a Jupyter Notebook interface), the actual code of
the experiment (as opposed to a dictionary) may be trans-
mitted to the server. It should be noted that such a program-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

matic interface 1s also a zero-footprint intertace in that 1t
does not require the user to install any code or library
betorehand.

In one embodiment the user’s selections may also be
checked for consistency to make sure that the selections are
appropriate.

In one embodiment, the user may provide problem data
for the problem which 1s to be executed by the quantum
backend.

In step 225, the server may instantiate a quantum program
for execution and may communicate the quantum program
to the selected backend. In one embodiment, an algorithm,
or combination of algorithms, may generate one or more
circuits via calls to a circuits library.

In step 230, the selected quantum backend may execute
the quantum program using the program data, and in step
235, the results of the execution are returned to the user
interface.

Herematter, general aspects of implementation of the
systems and methods of the embodiments will be described.

The system of the embodiments or portions of the system
of the embodiments may be 1n the form of a “processing
machine,” such as a general-purpose computer, for example.
As used herein, the term “processing machine” i1s to be
understood to include at least one processor that uses at least
one memory. The at least one memory stores a set of
instructions. The instructions may be either permanently or
temporarily stored in the memory or memories of the
processing machine. The processor executes the istructions
that are stored in the memory or memories 1n order to
process data. The set of instructions may include various
instructions that perform a particular task or tasks, such as
those tasks described above. Such a set of mstructions for
performing a particular task may be characterized as a
program, soitware program, or simply software.

In one embodiment, the processing machine may be a
specialized processor.

As noted above, the processing machine executes the
instructions that are stored in the memory or memories to
process data. This processing of data may be in response to
commands by a user or users of the processing machine, 1n
response to previous processing, 1n response to a request by
another processing machine and/or any other input, for
example.

As noted above, the processing machine used to 1mple-
ment the embodiments may be a general-purpose computer.
However, the processing machine described above may also
utilize any of a wide variety of other technologies including,
a special purpose computer, a computer system including,
for example, a microcomputer, mini-computer or main-
frame, a programmed microprocessor, a micro-controller, a
peripheral integrated circuit element, a CSIC (Customer
Specific Integrated Circuit) or ASIC (Application Specific
Integrated Circuit) or other integrated circuit, a logic circuit,
a digital signal processor, a programmable logic device such
as a FPGA, PLD, PLA or PAL, or any other device or
arrangement of devices that 1s capable of implementing the
steps of the processes of the embodiments.

The processing machine used to implement the embodi-
ments may utilize a suitable operating system. Thus,
embodiments may include a processing machine running the
10S operating system, the OS X operating system, the
Android operating system, the Microsoit Windows™ oper-
ating systems, the Unix operating system, the Linux oper-
ating system, the Xenix operating system, the IBM AIX™
operating system, the Hewlett-Packard UX™ operating sys-
tem, the Novell Netware™ operating system, the Sun

US 11,507,397 B2

7

Microsystems Solaris™ operating system, the OS/2™ oper-
ating system, the BeOS™ operating system, the Macintosh
operating system, the Apache operating system, an Open-
Step™ operating system or another operating system or
platform.

It 1s appreciated that 1n order to practice the methods as
described above, it 1s not necessary that the processors
and/or the memories of the processing machine be physi-
cally located 1n the same geographical place. That 1s, each of
the processors and the memories used by the processing
machine may be located 1n geographically distinct locations
and connected so as to communicate 1n any suitable manner.
Additionally, i1t 1s appreciated that each of the processor
and/or the memory may be composed of different physical
pieces of equipment. Accordingly, 1t 1s not necessary that the
processor be one single piece of equipment 1n one location
and that the memory be another single piece of equipment 1n
another location. That is, 1t 15 contemplated that the proces-
sor may be two pieces of equipment 1n two different physical
locations. The two distinct pieces of equipment may be
connected 1n any suitable manner. Additionally, the memory
may include two or more portions of memory in two or more
physical locations.

To explain further, processing, as described above, 1s
performed by various components and various memories.
However, it 1s appreciated that the processing performed by
two distinct components as described above may, in accor-
dance with a further embodiment, be performed by a single
component. Further, the processing performed by one dis-
tinct component as described above may be performed by
two distinct components. In a similar manner, the memory
storage performed by two distinct memory portions as
described above may, 1n accordance with a further embodi-
ment, be performed by a single memory portion. Further, the
memory storage performed by one distinct memory portion
as described above may be performed by two memory
portions.

Further, various technologies may be used to provide
communication between the wvarious processors and/or
memories, as well as to allow the processors and/or the
memories to communicate with any other entity; 1.e., so as
to obtain further instructions or to access and use remote
memory stores, for example. Such technologies used to
provide such communication might include a network, the
Internet, Intranet, Extranet, LAN, an FEthernet, wireless
communication via cell tower or satellite, or any client
server system that provides communication, for example.
Such communications technologies may use any suitable
protocol such as TCP/IP, UDP, or OSI, for example.

As described above, a set of instructions may be used 1n
the processing of the embodiments. The set of 1nstructions
may be 1n the form of a program or software. The software
may be i1n the form of system software or application
software, for example. The software might also be 1n the
form of a collection of separate programs, a program module
within a larger program, or a portion of a program module,
for example. The software used might also include modular
programming 1n the form of object oriented programming.
The software tells the processing machine what to do with
the data being processed.

Further, 1t 1s appreciated that the instructions or set of
instructions used in the implementation and operation of the
embodiments may be 1 a suitable form such that the
processing machine may read the instructions. For example,
the instructions that form a program may be 1n the form of
a suitable programming language, which 1s converted to
machine language or object code to allow the processor or

10

15

20

25

30

35

40

45

50

55

60

65

8

processors to read the instructions. That 1s, written lines of
programming code or source code, 1n a particular program-
ming language, are converted to machine language using a
compiler, assembler or interpreter. The machine language 1s
binary coded machine instructions that are specific to a
particular type of processing machine, 1.e., to a particular
type ol computer, for example. The computer understands
the machine language.

Any suitable programming language may be used 1n
accordance with the various embodiments. Illustratively, the
programming language used may include assembly lan-
guage, Ada, APL, Basic, C, C++, COBOL, dBase, Forth,
Fortran, Java, Modula-2, Pascal, Prolog, Python, REXX,
Visual Basic, and/or JavaScript, for example. Further, 1t 1s
not necessary that a single type of instruction or single
programming language be utilized 1n conjunction with the
operation of the system and method of the embodiments.
Rather, any number of different programming languages
may be utilized as 1s necessary and/or desirable.

Also, the instructions and/or data used 1n the practice of
the embodiments may utilize any compression or encryption
technique or algorithm, as may be desired. An encryption
module might be used to encrypt data. Further, files or other
data may be decrypted using a suitable decryption module,
for example.

As described above, the embodiments may illustratively
be embodied 1n the form of a processing machine, including
a computer or computer system, for example, that includes
at least one memory. It 1s to be appreciated that the set of
instructions, 1.e., the software, for example, that enables the
computer operating system to perform the operations
described above may be contained on any of a wide variety
of media or medium, as desired. Further, the data that 1s
processed by the set of instructions might also be contained
on any of a wide variety of media or medium. That 1s, the
particular medium, 1.e., the memory in the processing
machine, utilized to hold the set of instructions and/or the
data used in the embodiments may take on any of a variety
of physical forms or transmissions, for example. Illustra-
tively, the medium may be in the form of paper, paper
transparencies, a compact disk, a DVD, an integrated circuit,
a hard disk, a floppy disk, an optical disk, a magnetic tape,
a RAM, a ROM, a PROM, an EPROM, a wire, a cable, a
fiber, a communications channel, a satellite transmission, a
memory card, a SIM card, or other remote transmission, as
well as any other medium or source of data that may be read
by the processors of the embodiments.

Further, the memory or memories used 1n the processing
machine that implements the embodiments may be 1n any of
a wide variety of forms to allow the memory to hold
instructions, data, or other information, as 1s desired. Thus,
the memory might be 1n the form of a database to hold data.
The database might use any desired arrangement of files
such as a flat file arrangement or a relational database
arrangement, for example.

In the system and method of the embodiments, a variety
of “‘user interfaces” may be utilized to allow a user to
interface with the processing machine or machines that are
used to implement the embodiments. As used herein, a user
interface includes any hardware, software, or combination of
hardware and soitware used by the processing machine that
allows a user to interact with the processing machine. A user
interface may be in the form of a dialogue screen for
example. A user interface may also include any of a mouse,
touch screen, keyboard, keypad, voice reader, voice recog-
nizer, dialogue screen, menu box, list, checkbox, toggle
switch, a pushbutton or any other device that allows a user

US 11,507,397 B2

9

to receive information regarding the operation of the pro-
cessing machine as 1t processes a set of instructions and/or
provides the processing machine with information. Accord-
ingly, the user interface 1s any device that provides commu-
nication between a user and a processing machine. The
information provided by the user to the processing machine
through the user interface may be 1n the form of a command,
a selection of data, or some other input, for example.

As discussed above, a user interface 1s utilized by the
processing machine that performs a set of instructions such
that the processing machine processes data for a user. The
user interface 1s typically used by the processing machine
for interacting with a user either to convey information or
receive information from the user. However, 1t should be
appreciated that 1n accordance with some embodiments, it 1s
not necessary that a human user actually interact with a user
interface used by the processing machine. Rather, 1t 1s also
contemplated that the user interface might interact, i.e.,
convey and recerve information, with another processing
machine, rather than a human user. Accordingly, the other
processing machine might be characterized as a user. Fur-
ther, 1t 1s contemplated that a user interface utilized in the
system and method of the embodiments may interact par-
tially with another processing machine or processing
machines, while also interacting partially with a human user.

It will be readily understood by those persons skilled in
the art that the present embodiments are susceptible to broad
utility and application. Many embodiments and adaptations
other than those herein described, as well as many varia-
tions, modifications and equivalent arrangements, will be
apparent from or reasonably suggested by the present
embodiments and foregoing description thereof, without
departing from the substance or scope of the invention.

Accordingly, while the present exemplary embodiments
have been described here 1n detail, 1t 1s to be understood that
this disclosure 1s only 1llustrative and exemplary and 1s made
to provide an enabling disclosure of the invention. Accord-
ingly, the foregoing disclosure i1s not intended to be con-
strued or to limit the present embodiments or otherwise to
exclude any other such embodiments, adaptations, varia-
tions, modifications or equivalent arrangements.

What 1s claimed 1s:
1. A method for cloud-based execution of quantum-
computing programs, comprising:
in an electronic device comprising at least one computer
Processor:
receiving, from a user interface on a client device, a
serialized file comprising a user selection of a prob-
lem domain from a plurality of problem domains, an
application for the problem domain from a plurality
of applications, and quantum algorithm from a plu-
rality of quantum algorithms, wherein the problem
domain, the application for the problem domain, and
the quantum algorithm are selected from a problem
domain library, an application library, and a quantum
algorithm library;
verilying that the user selection of the problem domain,
the application for the problem domain, and the
quantum algorithm are consistent with each other;
receiving, from the user iterface, problem data and an
identification of a quantum computing backend for
executing the problem data;
instantiating a quantum program for execution using
the user selection of the problem domain, the appli-
cation for the problem domain, and the quantum

10

15

20

25

30

35

40

45

50

55

60

65

10

algorithm, and communicating the quantum program
and the problem data to the quantum computing
backend for execution;

receiving, from the quantum computing backend, an
output of the execution; and

communicating the output to the user interface on the
client device.

2. The method of claim 1, wherein the problem domain,
the application, and the quantum algorithm are selected
serially.

3. The method of claim 1, wherein the serialized file has
a standardized format.

4. The method of claim 1, wherein the problem domain,
the application, and the quantum algorithm are represented
in the senialized file as key/value pairs.

5. The method of claim 1, wherein the quantum comput-
ing backend comprises a quantum computer.

6. The method of claim 1, wherein the quantum comput-
ing backend comprises a quantum computing simulator.

7. A method for cloud-based execution of quantum-
computing programs, comprising:

in an electronic device comprising at least one computer

Processor:

receiving, from a user interface on a client device, a
user selection of a problem domain from a plurality
ol problem domains, an application for the problem
domain from a plurality of applications, and quan-
tum algorithm from a plurality of quantum algo-
rithms, wherein the problem domain, the application
for the problem domain, and the quantum algorithm
are selected from a problem domain library, an
application library, and a quantum algorithm library;

receiving, from the user interface, problem data and an
identification of a quantum computing backend for
executing the problem data;

serializing the user selection of the problem domain,
the application, and the quantum algorithm into a
serialized file;

communicating the serialized file and the problem data
to a server, wherein the server verifies that the user
selection of the problem domain, the application for
the problem domain, and the quantum algorithm are
consistent with each other and 1nstantiates a quantum
program for execution using the user selection of the
problem domain, the application for the problem
domain, and the quantum algorithm, and communi-
cates the quantum program and the problem data to
the quantum computing backend for execution;

receiving, from the quantum computing backend via
the server, an output of the execution; and

presenting the output to the user interface on the client
device.

8. The method of claim 7, wherein the problem domain,
the application, and the quantum algorithm are selected
serially.

9. The method of claim 7, wherein the serialized file has
a standardized format.

10. The method of claim 7, wherein the problem domain,
the application, and the quantum algorithm are represented
in the senalized file as key/value pairs.

11. The method of claim 7, wherein the quantum com-
puting backend comprises a quantum computer.

12. The method of claim 7, wherein the quantum com-
puting backend comprises a quantum computing simulator.

13. A system for cloud-based execution of quantum-
computing programs, comprising:

US 11,507,397 B2

11

a chient device comprising a client device computer
processor and executing a user interface;
a server comprising a server computer processor 1 com-
munication with the client device;
a problem domain library comprising a plurality of prob-
lem domains;
an application library comprising a plurality of applica-
tions for each of the plurality of problem domains;
a quantum algorithm library comprising a plurality of
quantum algorithms for each of the plurality of appli-
cations;
a circuit library comprising a plurality of quantum cir-
cuits; and
a plurality of quantum computing backends;
wherein:
the client device receives, at the user interface, a user
selection of one of the plurality of problem domains
from the problem domain library, one of the plurality
of applications from the application library, and one
of the plurality of quantum algorithms from the
quantum algorithm library;

the client device receives, at the user interface, problem
data and an 1dentification of one of the plurality of
quantum computing backends for executing the
problem data;

the client device sernalizes the selection of the problem
domain, the application, and the quantum algorithm
into a serialized file;

the client device communicates the serialized file and

the problem data to a server, wherein the server

5

10

15

20

25

12

instantiates a quantum program and communicates
the quantum program and the problem data to the
identified quantum computing backend for execu-
tion, wherein the quantum program comprises at
least one circuit from the circuit library;
the server verifies that the user selection of the problem
domain, the application, and the quantum algorithm
are consistent with each other;
the server instantiates a quantum program for execution
using the user selection of the problem domain, the
application, and the quantum algorithm, and com-
municates the quantum program and the problem
data to the identified quantum computing backend
for execution; and
the server receives, from the identified quantum com-
puting backend, an output of the execution and
communicates the output to the user interface on the
client device.
14. The system of claim 13, wherein the problem domain,
the application, and the quantum algorithm are selected

serially.

15. The system of claim 13, wherein the problem domain,
the application, and the quantum algorithm are represented
in the serialized file as key/value patirs.

16. The system of claim 13, wherein the plurality of
quantum computing backends comprise a quantum com-
puter and a quantum computing simulator.

¥ ¥ H ¥ H

	Front Page
	Drawings
	Specification
	Claims

